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Maximum entropy methods are used for reconstructing the distribu-
tion of energy in wave vector space from frequency spectra observed on
board satellites. The recanstruction scheme is based on a modified
entropy function, and dual principles are used to solve the resulting
optimization problem. Our scheme is not limited to reconstructions of
wave distribution functions, but it should be useful also for solving
other types of underdetermined inverse problems.  © 1394 Academic
Press, Ing.

1. INTRODUCTION

Charged particles emerging from the sun form the so-
called solar wind. The solar wind flows radially outwards
from the sun into the interplanetary space. When the solar
wind particles reach a distance of about 50000-75000 km
from the Earth, they interact strongly with the planetary
magnetic field. The interaction diverts the flow around the
Earth in a collisionless shock, the bow shock. The region of
space formed behind the shock front is called the Earth’s
magnetosphere (see Fig. 1). Satellite missions have revealed
the existence of magnetospheres also around other
planets, such as Jupiter, Saturn, Uranus, and Neptune.
Magnetospheres are believed to exist around the sun and
other stars, and even galaxies may have their own
magnetospheres.

In the magnetosphere and the solar wind, as well as in the
sun itself, matter is in the state of a highly ionized gas, a
plasma. The plasma state dominates our solar system and is
believed to prevail throughout the universe. As plasmas are
formed by free charged particles, they are rich in electric and
magnetic wave phenomena. Waves with frequencies ranging
from below 1 Hz up to a few megahertz can be generated
and absorbed spontaneously in the Earth’s magnetosphere.
These electric and magnetic wave fields play an active role
in the dynamics of the magnetosphere. For instance, ion-
related electromagnetic emissions close to the Earth are
believed to heat ions at low altitudes, thereby contributing
to the outflow of oxygen from the Earth’s atmosphere.

221

Theoretical investigations of plasma waves are often
performed by Fourier transforming the fields according to

E(k, )= [ di dpE(p, ) expli(i—k-p)], (1)

where E(p, ) is the electric field as a function of the spatial
coordinates p and time ¢ Furthermore,  is the angular
frequency and k is the wave vector. Translorming the
Vlasov—Maxwells equations, which govern the dynamics of
collisionless plasmas, results in a dispersion relation [1]
det D(k, @) =0, (2)
where det D stands for the determinant of D. The dispersion
tensor D is related to the dielectric tensor £(k, w) through
the relation
D(k. o) =¢,[(kk —1&?) * + w’e(k, @)], (3)
where g, is the permittivity of free space, | is the unit tensor,
c is the speed of light in vacuum, and 4 = 'k|. We denote the
solution of the dispersion relation by wm=(k). In the
dissipationless limit that we consider here, w is always real.
From the Viasov-Maxwells equations we also obtain the
polarization vectors e and b for the wave clectric and
magnetic field, respectively.
The key parameter for understanding the physical
processes generating space plasma waves is the wave

distribution function (WDF). The WDF is defined in terms
of the dispersion tensor as [2]

1
H=E*K)| 2,0k o) |- EW. (@

Here the bracket is evaluated at w = 2(k), and E*{(k) is the

complex conjugate of the spatial Fourier transform of the
electric field. As discussed elsewhere [2, 3],  is in reality
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FIG. 1, Schematic picture of the Earth’s magnetosphere. The dipolar
magnetic field of the Earth is compressed by the solar wind on the side of
the planet facing the sun and elongated in a long tail on the anti-sunward
side. The boundary of the magnetosphere is called the magnetopause.

the energy density in configuration and wave vector space,
having the dimension of energy. For our purpose here, the
WDF can be thought of as the energy density in k-space.
Being an cnergy density, (k) is strictly positive.

The central role played by the WDF makes it the crucial
quantity to measure. However, satellites can measure only
at one or at most a few points in space, making a spatial
spectrum impossible to compute. Instead, wave observa-
tions are normally processed to produce frequency spectra,
A frequency spectrum C{w) can be either the power spec-
trum of a given electric or magnetic field component, or the
cross spectrum between two different field components.
Theoretically, frequency spectra are related to the WDF
through an equation of the form [3, 4]

Clw) = S(w; ¥), (5)

where

S(w;¥) =] dk A(K) §(k) (0 —Q(K).  (6)

Here §( ) denotes Dirac’s delta function. The kernels A(k)
depend on the polarization vectors e and/or b and on the
characteristics of the measuring antennas.

The measured frequency spectra contain vital informa-
tion about the WDF, and it was Storey and Lefeuvre [4]
who first suggested that frequency spectra could be used to
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reconstruct the WDF. Reconstruction of the WDF is a type
of ili posed problem that occurs frequently in many research
areas [ 5-7]. While these problems cannot be solved exactly,
their importance has promoted the use of various
reconstruction techniques for extracting as much informa-
tion as possible from the available data. The purpose of this
paper is to present a new version of the maximum entropy
reconstruction method that we have found useful for
resolving the WDF problem.

It should be emphasized that our paper presents a
modification of the classic maximum entropy method.
Recently developed inversion techniques use Bayvesian
statistics to perform reconstructions as well as for
estimating the reliability of the solution [8]. Extending our
method to inciude Bayesian statistics will be the subject of
future work.

The methed we use is based on a modification of the
traditional entropy of a continuous function. The modified
entropy function automatically compensates for the lack of
information about the normalization of the WDF. By trans-
forming the resulting optimization problem into a dual
problem, a great reduction in dimensionality is achieved.
Depending on the particular problem, the number of
degrees of freedom can be reduced by a factor 100 or even
more. These particular features do not pertain particularly
to reconstruction of the WDF, but they should be of equal
importance in many other situations where continuous
distributions are reconstructed from sparse data. Here we
demonstrate how the method works in the WDF context
and hope that our examples will arouse interest in our
method.

2. MAXIMUM ENTROPY RECONSTRUCTION
OF THE WDF

Most physicists are acquainted with the entropy concept
from statistical physics. The canonical distribution, for
example, can be found by maximizing the entropy of a
system at fixed density and temperature. During the last
decades, starting with Jaynes [9-11], the entropy concept
has found its way to other research areas with little or no
connection to statistical physics. The maximum entropy
(M-E) method is becoming one of the standard tools for
solving ill-posed problems in, for instance, image decoding
[12], radio astronomy [13], seismology [14], and com-
puter tomography [ 15]. The method is used also in spectral
analysis [16] and in the construction of expert systems
[17]. However, even though M-E has been used for several
decades, a completely unified implementation of the method
still does not exist. Various experimental constraints are
used [13, 18], and even the appropriate form of the entropy
function is debated [13, 19]. Here we discuss the relevant
entropy of the WDF and the constraints imposed by the
observed frequency spectra.
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2.1. Conventional Definitions of Entropy

The M-E method is often introduced by considering the
loaded dice probiem [20]. Given the average number of
eyes turning up in a series of N tosses, how many times, ¥,
did the ith face turn up? Alternatively, we can ask what s
the probability p, of turning up the ith face in the next toss?
To give the most plausible answer to this question M-E
advocates write down the multiplicity

N!

M=—""_
75N,

(7)

and argue that the most likely numbers ¥, of those consis-
tent with the observed average are the ones maximizing M.
Assuming N to be sufficiently large and using Stirlings
approximation one can write

[
log M= — % N log(N,/N)

f=1

(8)

or introduce the entropy H; by writing

1 [
Hy=—log M~ — Y pilog(p),

i=1

9)

where p, = N;/N. When the total number of tosses is known,
maximizing the multiplicity is equivalent to finding the
probability distribution maximizing the entropy. Note that
p;=const = maximizes the entropy when no constraint
other than 3 p;=1is imposed.

The M-E resolution of the loaded dice problem can be
transferred to other underdetermined inverse problems in
what we may define as the M-E spirit—of all solutions con-
sistent with the data, choose the one having the highest
entropy. In contrast to the loaded dice problem, physical
distributions are normally continuous rather than discrete.
In accordance with (9), the entropy of a continuous
function f(y) assumed to be positive everywhere is often
defined by

f) (10

Hi) = = [ o fioytog | £5 1

Jaynes [11] calls 4 an “invariant measure,” which is
introduced to ensure that the entropy scales properly under
coordinate transformations. In practice, when it comes
to numerical computations, the continuous problem is
normally discretized and the integral replaced by a sum. The
analogy between (10) and (9) is then clear, especially when
4(y)=1. In any case, the global maximum of H,(f) is
found for

f)y=e " 4(y). (11)
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Some authors add — fto the entropy to avoid the factor e '
[21, 227. The M-E method strives to satisfy the constraints
imposed by the data while remaining as close as possible to
the global optimum (11). Thereby A gives the solution a
certain bias, and this creates a valuable flexiblity. In
practice one often uses A(y)=const=4,.

2.2. The Entropy of the WDF

In many applications interest is focused on certain strue-
tures in the distribution being reconstructed. Astronomers
performing image reconstruction may be interested in
proving the existence of a double star and computerized
tomography searches for structures inside objects using
projection measurements. In space physics structures in the
distribution of energy in k-space contain information about
the underlying physical process generating the waves and
about the location of the source region in space. In these
cases it is essential that the reconstruction method oniy
reproduces structures required by the data. Spurious peaks
must be suppressed.

Having stressed the importance of structures in the WDF,
it is clear that whenever the data are consistent with a com-
pletely structureless, constant WDF this must also be the
solution produced by the reconstruction scheme. Otherwise,
if our inversion technique fails 1o reproduce a flat WDF
even in the case when (k) = const = ¢ is consistent with the
data, we could easily be lead to conclusions not supported
by the data in the general case. A M-E method based on
(10} satisfies the above requirement, provided that we
choose 4, =ec. However, since no information about  is
available at the outset of the analysis, it is not clear how the
constant ¢ should be chosen.

To illustrate the problems that the missing information
about normalization can lead to, we consider a set of six
scales. The scales are biased so that a load of w kg causes the
ith scale to deviate by an amount d;=iw. Let w; be the
unknown load on the ith scale. Furthermore, assume that
the total load W=7, w, is unknown, but that the averages

; {12)

dH=3 Y d} (13)

are given by {(d>=3.5 and {d*) =15.17. Figure 2 shows
the results obtained by reconstructing the load distribution
using a discretized version of (10} with e~ 4,.=0.5, 1, and
2, respectively. With 4_= e the M-E method found the con-
stant solution w;=1 consistent with the data. However, in
the other two cases the reconstruction method imposes
structures on the solutions that we would falselv credit
inhomogeneities in the true load distribution had we no
other information available,
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FIG. 2. Continucus “loaded dice” problem. The load distribution on

six biased scales is reconstructed from observations of the averages
{d)y =3.5and {d*) = 1517 using three different constant values d=4,.

The solutions presented in Fig. 2 are of the form

2
w,=A_exp [ Y ALipGiw)P~t— 1:|, (14)
p=1

where A, and A, are the Lagrange multipliers for the
constraint in (12) and (13), respectively. The results in
Fig.2 can be verified by inserting i, =0470085 and
Ay = —0.032424 for the case 4.=¢/2, and 4, = ~0.328474
and 4, =0.017046 for the case 4, = 2e.

The non-linear constraint (13) is used in order to simply
the exposition. However, it should be noted that the results
from the analysis do not depend crucially on the fact that
one of the constraints is non-linear in w. Similar results
are obtained when using (12), together with the linear
constraint

itw,=15.17.

1

(15)

1
3

i e

i

This can be verified by applying the method of Lagrange
multipliers using 1, =0.413846 and 1,= —0052777, and
A, = —0432553 and 4,=0.055953 for the cases 4 ,=¢/2
and A,.=2e, respectively. Inhomogeneities in the
reconstruction shown in Fig.2 do not depend on our
particular choice of constraints, but on our failure to
prescribe the proper entropy function.

Clearly, reconstructions based on (10} depend crucially
on the choice of 4. One value of 4_may produce a constant
WDF while some other value may not. The problem would
be resolved if the total encrgy density ¥= | dk yr(k) was
known beforehand. Then the only constant WDF allowed
would be the one consistent with ¥, and we could choose

1

=5 e¥ (16)

4,
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where V is the volume in k-space. The problem of no a priori
knowledge of the normalization occurs also in, for instance,
image reconstruction. There one often circumvents the
problem by using an estimate of the corresponding
integrated quantity (13, 23]. A similar procedure could be
used also when reconstructing the WDF. One can also
envisage a scheme based on iterative reconstructions, where
the ¥ value of the previous reconstruction is used in the
next. However, neither of these methods is quite satis-
factory. To first estimate ¥ [rom the observed frequency
spectra and then reconstruct the WDF using the same data
is not in line with the M-E philosophy. Nor does the use of
iterative reconstructions seem to be the most consistent
implementation of the M-E method. Instead we draw the
conclusion that (10) does not define the appropriate
entropy of the WDF.

To find a suitable form for the entropy of the WDF,
we return to the loaded dice problem. The argument for
resolving the loaded dice problem by maximizing the
entropy in (9) is that this automatically maximizes the
multiplicity. However, this is true only when the total
number of tosses is known. When N is unknown, which is
the analogue to the WDF case, the problem should be
resolved by maximizing the multiplicity directly. Hence, in
analogy with (8) rather than with (9), we define the entropy
of the WDF as

L Yk
H) = — [ iy log [,P A{k)]. (a7
This entropy has a global maximum when
ﬂq?:gr(k). (18)

Note that the existence of this solution requires that
{ 4(k) dk = 1. For any 4 satisfying this condition we sce
that the WDF at the global maximum is determined only
to within a multiplicative factor. In particular, for 4=
4,.=1/V the entropy is at maximum for any constant WDF.
This means that whenever y(k)=c is consistent with the
data, this solution maximizes the entropy irrespective of the
value of the constant ¢,

The problem of using M-E reconstruction when the
normalization #={ f(y}dy is unknown is not new.
Surprisingly, although the entropy definition in (17) is a
natural choice considering the multiplicity argument for
M-E, it is not used to circumvent the problem. Instead, a
common way of resolving the problem is to define the
entropy as [24-27]

_ f») S(y)
Hyfy=—[ iyl “’g[mm]'

{19}
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The entropies H(f') and H,(f) both attain maximum values
for distributions satisfying f{y)/F=4(y). However, we
believe that the entropy in (17} is more in line with the
general M-E reasoning, and there seems to be nothing in the
latter form justifying the extra complexity introduced in
the computation of the gradient and the Hessian matrix.
Hence, we define H{y) to be the entropy of the WDF and
base our reconstructions on this.

2.3. Swmmary of the Reconstruction Scheme

Experimental data are always afflicted by errors. Hence,
WDFs reproducing the data exactly are not the only solu-
tions consistent with the data. In fact, an exact reproduction
of the observations may be impossible due to noise. Instead
of demanding that the WDF should satisfy (5) exactly, we
take the statistical approach used by Skilling and Gull and
others [13, 28],

Before writing down the constraint function a few words
o notations are required. Our data consist of a certain
combination of power and cross-spectra measured at a finite
number of discrete frequencies. To keep notations short we
arrange these data in a single vector C of length m, where m
is the total number of independent observations. This means
that C does not depend on . Instead the frequency deter-
mings the position of a certain spectrum within the vector C.
A similar vector notation is used throughout also for
S{w; ). To formulate the constraint imposed on the
solution by the data we define

c¥) i __’lf)]_

1
5 (20)

\.‘

where C; is the jth element of C. Assuming the errors to be
random and normally distributed with known variance o;
we can use the x” distribution to set an upper bound, ﬁbound,
on £(y). At the 95% level the upper limit is roughly equal
to m/2. This is a satisfactory procedure even though in
general the variancies are not known. We come back to this
point later in Section 3.

Any WDF generating a £ value below £,,,,,,,4 is considered
a feasible solution to the inverse problem. In accordance
with the M-E spirit discussed earlier, our reconstruction
scheme sums up to

maximize

H(y)

21
g('tb}s-ébound' ( )

subject to

In the following we consider the numerical solution of (21),
and in particular we discuss a dual formulation of the
problem.
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3. NUMERICAL SOLUTION

3.1. The Original Problem

The numerical integration in (6) is facilitated by first
averaging over a finite frequency interval Aw centered on
@ = ty. The k-integral is then performed over the volume in
wave vector space where the dispersion relation o = £2(k)
is satisfled within the frequency interval [wy— dw/2,
o + Aw/2]. We introduce a mesh in k-space and denote by
8, the volume of the grid element centered on the /th grid
point, k,. Defining

x=y(k)é, (22)
we can replace the k-integral by the sum
S(x)= Y xA, (23)

I=1

where » is the number of grid points in k-space, and x con-

tains the # values of yr(k,) §,. In practice, n is always much

larger than m, the number of independent observations. The

vector A, contains the kernel values at the /th grid point and

has the same dimension, m, as the vectors C and S,
Sirnilarly, we write the entropy as the sum

H(x)= -él % 1n [fi /‘f—;] (24)
where
X=[il x (25)
and
V=3 4 (26)

A more detailed description of the discretization procedure
is given elsewhere [3, 29].

Introducing the negative of the entropy H  (x), the
discretized reconstruction problem can be written as the
minimization problem

minimize

x

H~(x)
(27)

SubjGCt to é(x) < ébound >

where the constraint function is given by

£(x) =3 |C—S(x)I* (28)
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Here we have included the standard deviations in the
normalization of C and S. Accordingly, the jth component
of the vectors C and A, are given by C,/a, and (A,);/o,,
respectively.

The optimization problem in (27) is a convex program
[30]. As such it has several desirable qualities, the most
important being that the solution is unique. Except for the
trivial case when the data are consistent with a constant
WDF, the solution of (27) satisfies £(X) = £,,ng- The solu-
tion can then be obtained by minimizing the Lagrangian
function

L(x) = pH ~(x) + &(x) (29)
with respect to x for fixed values of u. We know from the
convex nature of the problem that x> 0 and that its value
should be chosen so that £(x) = £,,,.4 2t the minimum of L.
To begin, we solved this problem using Monte-Carlo
techniques [ 3] which are simple to implement but slow and
ineflicient. In our later work we use an improved algorithm
based on conjugate gradient methods and reconstruct
WDFs from real satellite data [31, 32]. However, the large
size of the problem also makes conjugate gradient algo-
rithms slow and inefficient. The largest problem solved with
conjugate gradient methods has n = 1500 and m = 20. Some
interesting things can be done at this size, but a really useful
WDF reconstruction scheme must be able to handle larger
problems. For this purpose we develop a dual formulation,
which exploits the much lower dimension m of the observed
spectral densities.

3.2. The Dual Problem

Minimization of L(x) for fixed u gives
(30)

where

(31)

Equation (30), together with the constraint &= {youna.
defines x implicitly. However, these equations are just as
difficult to solve as minimizing the Lagrangian function in
{29). If we instead treat r and X as the unknowns, the
solution of (27) can be obtained by solving the dual
problem

_ 78, 1
r:C—XElI—/’A,exp [;r A,] (32)
- o[ a]
1= —exp|-r-A|, (33)
DA
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where (33) comes from summing both sides of (30). Now p
should be adjusted so that
() =31 -1 ={houna- (34)

To solve the system of non-linear equations (32) and (33),
we recast the problem by noting that (32) can be written as

9y - 1

?{AIGXP[EI-AI]

i{lr r—r. C+,uXZ iexp[l K,}}

ar {2

(35)

Considering p as fixed and letting the product uX play the
role of a Lagrange multiplier, eq. (35) can also be phrased
as the constrained optimization problem

minimize  f(r)
! (36)
subject to g(r, u)y=1
where
JiO)=3(c-C)-(r-C) (37)
and
(r, u)= i é lilr A (38)

Note that the equality constraint ensures that (33) is
satisfied. The optimization problem (36) can be solved by
minimizing the dual Lagrangian function

LD(L nu’ )-) =f(r) + ’I‘I(r: .u)

(39)
for fixed values of the Lagrange multipliers g and A The
simultaneous solution of (32) and (33) requires that 1= pX
when g{r, y)=1 at the minimum of I ,. Consequently,
when a solution to the dual problem has been found, y(k,)
can be retrieved through egs. (30) and (22), with X' = 1/u.

Obviously f(r) is convex and, since the Hessian of ¢ is
given by

5;A: A,

PR L

(40)

we have ¥-V7g-v 20 for any vector v, and consequently,
q(r, u) is also convex. Thus, the original convex optimiza-
tion problem in » dimensions is replaced by another convex
problem in m unknowns, and thereby, the dual problem has
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the same nice qualities as the original problem. Further-
more, since in general # » m, solving the dual instead of the
original problem ieads to a tremendous reduction in
computational cost.

3.3, Optimization Techniques

Qur scheme for solving the dual problem can be split
into two parts. One part consists of the subproblem of
minimizing the dual Lagrangian function with respect to ¢
for given values of pt and 4. The other part involves varying
uand A until the constraints (33) and {34) are fulfilled at the
minimum of L.

To minimize L, for fixed values of ¢ and i we use
Newtons method [30]. Let h denote the Hessian of L, so
that

h=V2L,(r, & A). (41)

Starting the iteration from an arbitrary point r, the step
length a along the Newton direction

oLy

kI
pv=-—h or

(42)

is determined through a line search along p,. The line
search is performed with the Van Wijngaarden-Dekker—
Brent method [337 until

oL
S (e apy, 1 4) py=0 (43)

is satisfied to within desired accuracy. Once the step length
is computed, r is updated according to r -+ r + apy, and the
iteration is continued untii the minimum of L ; is found. The
solution thus obtained is denoted by f(p, 4).

To determine u and A we first treat g as fixed and consider
g(f, 1) as a function of 4 We then apply the Van
Wijngaarden-Dekker-Brent method to determine the 4
satisfying g(#(g, 1), u)= L. Finally, we treat ¢(#(p, 4)) as a
function of g and use the Van Wijngaarden—Dekker—Brent
method to determine the 4 causing #(2, 1) to satisfy (34).
This is probably not the most efficient way of determining ji
and fL, but it is robust.

To exploit possible linear dependencies among the
kernels A, we introduce a suitable set of orthogonal basis
vectors. The procedure, which is outlined in Appendix A,
reduces the dimension of the problem when there are less
than m linearly independent kernel vectors. Numerical
problems sometimes occur due to the exponential in {38).
Even though it should be well-behaved at the solution, the
exponential may cause overflow during a specific iteration.
To remedy this problem we use the logarithmic constraint
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Infg(r, )] =0 rather than ¢{r, ) =1. The logarithm of g
can be computed accurately while avoiding overilow.
Furthermore, since g=1 at the solution of (36), the
Lagrange multiplier solving the subproblem with
logarithmic constraint is identical to 4.

In reality we establish convergence in four different ways.
At the lowest level we use the convergence criterion
described in [ 30, p. 306] to determine when the minimiza-
tion of L, for fixed z and 2 has succeeded. The subproblem
must be solved accurately due to the exponential rela-
tionship between x and r, which can blow up small errors
in f. We perform the optimization in double precision and
require that the constraint In[g] =0 must not be violated
by more than 10 7. When the i-iteration has converged to
within this limit, we check that the solution has converged
also in the sense that the resulting x computed from {30) is
really the minimum of L{x). To do this we compute

B l n aL/ox, 291/
8=15 L Garrasm) |

where a value of f# < 0.01 is considered acceptabie. Finally,
we make sure that the value of <(r) is consistent with the
value of £, ,.q- The requirement on this constraint is not as
strict as on g(r, 1), since we only have a rough estimate of
pound- This fact greatly simplifies computations. On the
other hand, each problem must be solved with several
&-values to make sure that the solution does not depend
strongly on the exact value of &,,,,4. In cases where the
reconstructed WDF is unstable to small variations in & yng
the solution is not reliable and must be rejected. In all cases
tried so far, the main features of the solutions have been
stable to substantial variations in &4, and this has
convinced us that the ¥ estimate of €,0,,q can be used even
though the variances are not known exactly.

The algorithms and numerical methods described above
have been implemented in the FORTRAN-package
MEREWASP (maximum entropy reconstruction of wave
distribution functions in space plasmas). In the next section
we demonstrate how the scheme operates by applving our
method to synthetic as well as to real satellite data.

4. APPLICATIONS

In this section we reconstruct the WDF from observa-
tions made with the French Aureol-3 satellite [34] The
Aureol-3 satellite was launched on September 21, 1931, into
a quasi-polar orbit with apogee at 2012 km and an orbital
period of 1 h 50 min. The satellite carries wave experiments
measuring three magnetic and two electric field components
[35]. Here we concentrate on the magnetic field observa-
tions, and we use both real and simulated data.
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FIG. 3. Cylindrical wave vector coordinates k., k, and ¢ are often
used when describing wave phenomena in magnetized plasmas. The z-axis
is chosen in the direction of the background magnetic field.

4.1. Solution of the Dispersion Relation

In the geometry of magnetized plasmas it is natural to
introduce cylindrical wave vector coordinates k,, k, , and ¢,
where k_ and k| are the wave vector components parallel
and perpendicular to the background magnetic field, as
shown in Fig. 3. To simplify analytical calculations it is
often assumed that the gyration of plasma particles in the
background magnetic field makes the dispersion relation
independent of the azimuthal angle ¢. The resulting disper-
sion relation can then be solved with numerical methods
and displayed as dispersion surfaces [36-38]. Figure 4

3
2 1
W/, 1
0
-
‘ -’ 1“
kZpH+ : 10’
Igd k_LpH+

FIG. 4. The real part of the frequency plotted as a dispersion surface.
The surface shows normalized frequency as a function of wave vector coor-
dinates parailel and perpendicular to the background magnetic fieid. The
wave vector coordinates are normalized to the inverse of the proton
gyroradius py+. To produce the surface we use a plasma model containing
15% protons, 5% He™*, and 80% O *. The ions as well as the electrons are
Maxwellian distributed in velocity with a temperature of 1 eV (11500 K).
Together with a background magnetic field strength of 27.7 T, this makes
Pu+ = 5 m. The plasma density is 7190 electrons/cm®,
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shows such a dispersion surface for a plasma consisting of
electrons, protons, and positively charged helium and
oxygen lons, Here py+ is the proton gyroradius and 4. is
the proton gyrofrequency. The model that we use is consis-
tent with conditions in space near the poles at roughly
1500 km above the surface of the Earth.

The dispersion surface in Fig. 4 is merely a part of the
complete solution of the dispersion relation. In principle,
our reconstruction scheme can handie any number of dis-
persion surfaces. However, in this study we concentrate on
a frequency range where the solution of the dispersion rela-
tion is single-valued, and therefore, only the surface in Fig. 4
needs to be included. Only &, > 0 is shown in the figure, but
an identical surface exists for k, < 0. Waves with £, > 0 and
k, =0 correspond to waves propagating parallel to the
background magnetic field. In the northern hemisphere
these waves propagate towards the Earth. A distinction
between downgoing (k. > () and upgoing (k, <0) waves
requires measurements of both electric and magnetic wave
fields [397]. Here we reconstruct the WDF from magnetic
field data only, and in such cases we¢ know beforehand that
the reconstructed WDF is symmetric with respect to k and
—k [29]. Therefore, to keep computations to a minimurm,
we exclude &, < 0 in the following reconstructions.

4.2, Synthetic Data

We compute synthetic Aureol-3 magnetic field spectra C
from a mode!l WDF y(k) and the relation
C=8(x), (45)
where %,=(k,) §,. The model WDF is shown by contours
of constant WDF in Figs. 5 and 6. Figure 5 shows the WDF
in the plane perpendicular to the background magnetic
field, where the model consists of a single peak at ¢ = 90°.
Figure 6 shows the model WDF in the (k. &.)-plane
projected onto the dispersion surface in Fig. 4.
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FIG. 5. Model WDF shown by contours of constant WDF in the
plane perpendicular to the background magnetic field. The WDF varies by
a factor of 1.41 between adjacent contour levels.
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it k_LPHJr

FIG. 6. Model WDF shown by constant WDF contours projected
onio the dispersion surface in Fig. 4. The WDF changes by a factor of 1.41
between adjacent contour levels. The dispersion surface is indicated for
k,=0and k,=0, and the constant frequency contours running across the
surface mark the frequency interval included in later reconstructions.

We use the plasma model described in the caption of
Fig. 4 and compute the required kernels from the dispersion
relation and from the geometry of the magnetic field anten-
nas. A logarithmic resolution of 0.02 in the (k , k. )-plane
and an angular resolution of 45° makes 7 = 23592. The two
constant frequency contours across the surface in Fig. 4
mark the included frequency range [1.02, 2.80] £24,+. We
divide this frequency range into six intervals, each of width
0.302,+. With three magnetic field components this
amounts to m =54 data points (three real power spectra
and three independent complex cross spectra in each of the
six frequency intervals). The spectral densities computed in
the six frequency intervals are assumed to be afflicted with
a 10% error, 0,=0.1C;.

The WDF reconstructed from synthetic data is shown in
Figs. 7 and 8. Besides some discretization effects visible in
Fig. 8, the reconstructed WDF displays a broadening of the
solution with respect to the.model. This broadening comes
from the M-E condition, which strives to maintain a flat
solution while satisfying the constraint imposed by the data.
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FIG. 7. WDF reconstructed from synthetic data generated by the
model WDF shown in Figs. 5 and 6. The solution is shown by contours of
constant WDF in the plane perpendicular io the background magnetic
field. The WDF varies by a factor of 1.41 between the contour levels,
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FIG. 8 Reconstructed WDF shown by constant WDF contours
projected onto the dispersion surface in Fig 4. There is a factor of 1.41
between adjacent contours. As in Fig. 6 the dispersion surface is indicated
for k, =0 and k=0, and the constant frequency contours running across
the surface mark the frequency interval included in the reconstruction.

Except for the discretization effects and a siight spread of
energy in k-space, the reconstruction reproduces the model
accurately. Note that even though the dispersion relation is
independent of the azimuthal angle ¢, the integration
kernels are not, and therefore, the reconstruction schemes
places the reconstructed WDF in the correct angular
interval.

To solve this particular problem our scheme tried three
different i-values and roughly 10 different A-values for each
value of u. The number of y-iterations required depends on
the initial guess. In this case we had already experimented
with different p-values, hence the small number of itera-
tions. The total cpu time required for this job on a 33 MHz
HP/APOLLO workstation was nearly 9 h. The final value
of B was roughly 107°.
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FIG. 9. Power spectral density for the BZ magnetic component
measured with Aurecl-3 at 0847 (UT) on June 10, 1982, Coordinates:
geomagnetic time 11:50, altitude 1612 km, geographic longitude 20.7°, and
geographic latitude 65.83°. The spectrum is computed from 80 ms of data
giving a frequency resolutien of 12.5 Hz. The dashed vertical line &t 422 Hz
indicates Q4+ /27



230

107 _
E I
i |
: ]
-4
L ;
™ E
s of -
I
£ 3
=
E
0| J
1w’ I 1 ]
500 1000 1500

Frequency (Hz)

FIG. 10. Average power spectral density in six frequency intervals
above the proton gyrofrequency. Each interval has a width of 125 Hz and
the lowest interval starts at 431 Hz, just above 2+ /2n.
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FIG. 11. WDF reconstructed from real Aureol-3 data. As before, the
WDF varies by a factor of 1.41 between contour levels.

]u“ kipHit

FIG. 12. Reconstructed WDF shown in the (k,, % )plane by
constant WDF contours separated by a factor of 1.41. Real Aureol-3 data
are used.
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FIG. 13, Schematic picture of the Earth viewed in the geographic
meridian plane. The figure shows the location of the Aureol-3 satellite on
the dayside (small circle), and a magnetic field line passing through this
point. The direction of the wave vector that we infer from the reconstructed
WDF is indicated at the location of the satellite. Only the upgoing (k, <0)
waves are represented here.

4.3. Real Data

Figure 9 shows a 120-point FFT spectrum of one of the
magnetic field components observed on Aurcol-3 on June
10, 1982. The observations were made on the day side near
local noon at an altitude of 1612 km and a geographic
latitude of 66°. The dashed vertical line at 422 Hz indicates
24+ /27 The power spectrum in Fig. 9 is a highly structured
function of frequency. However, we are not interested in
resolving all these structures. Instead, we average the spec-
trum over frequency intervals of width 125 Hz. We concen-
trate on waves with angular frequencies above the proton
gyrofrequency, and start from a frequency of 431 Hz. The
resulting average spectral densities are shown in Fig, 10.
When the frequency is normalized to £24.+/2m, these
frequency intervals correspond to the six intervals used in
the model problem carlier. In other respects we set up
the reconstruction as in the model problem. Thus, we
reconstruct the WDF over the dispersion surface in Fig. 4
with the same number of points in k-space, n = 23592, and
with the same number of data points, m = 54. The standard
deviations are assumed to be 10% of the spectral densities,
and only magnetic field data are used.

The reconstructed WDF presented in Figs. 11 and 12
shows a distinct peak in k-space for k, py+ ~0.0008,
k,pu+-=0002, and ¢=0° with only a small spread of
energy to lower and higher perpendicular wave numbers.
Due to the +k symmetry we can say immediately that the
reconstructed WDF contains an identical peak also at
k| py+=00008, k. py.ax —0002, and ¢=~180°. The
wavelength, 2x/k, is roughly 15 km, and the wave vector
makes an angle of about 20° with the background magnetic
field (see Fig. 13).

5. DISCUSSION

Before any reliable information can be obtained from a
reconstruction, the solution must be validated in many
ways. When new inversion techniques are introduced one
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often sees a variety of tests performed on model problems.
A successful reconstruction of the model distribution in
such tests is assumed to justify the reconstruction scheme.
This has been done also in the case of WDF reconstruction
[3, 41]. However, the successful reconstruction in one case
does not automatically guarantee reliable reconstructions in
another. How accurately the reconstruction is depends
strongly on the structure of the integration kernels. Uniform
kernels give no resolution capability at all, while highly
structured kernels may allow accurate reconstructions. In
our case the kernels vary between different satellites and
different dispersion surfaces in a way that we can hardiy
predict beforehand. Therefore, it is necessary to investigate
relevant model problems to obtain a feeling for how the
reconstruction scheme works in each given situation. For
this reason reconstructions from synthetic data have a
significant role to play in the analysis of real data. This
should be true, not only in WDF reconstructions, but also
in other cases. In our exampie in this paper, a sharply
peaked model WDF is reproduced accurately by the
reconstruction scheme. Even though more extensive tests
are required before any far-reaching conclusions can be
drawn, this gives credibility to the sharply peaked solution
we obtain by reconstructing the WDF from real data.

The solution to an underdetermined problem must not
depend strongly on smali variations in the data, since the
finer details in the data can be strongly affected by noise.
When reconstructing the WDF, stability in this sense can be
checked by investigating the effect on the WDF of smali
random vartations in the data. To do this explicitly is rather
laborious, and therefore, we normally test the solution by
reconstructing the WDF with different choices of &4
[3, 32]. Although this is not an equivalent procedure, it is
much simpler and gives an indication of the stability of the
solution with respect to noise in the data. Solutions
obtained so far have proved to be stable to substantial
variations in €yq,,q-

In addition, the solution should be stable to small pertur-
bations in the plasma model. Sateilite measurements of
plasma parameters such as density, temperature, and ion
composition are normally rather uncertain. For instance,
the ion compesition in the example in Section 4 is con-
sidered acceptable even though the raw data give 2% H™,
1% He*,and 97% O [42]. To ensure stability, the WDF
must be reconstructed with a representative selection of
plasma models consistent with the observed plasma
parameters. In this paper we present the results without
performing either of the above tests since we do not draw
any conclusions regarding the physics behind the data.
Our purpose here is merely to present our reconstruction
scheme.

Due to the fact that the inverse problem is underdeter-
mined, we know by almost certainty that the WDF
produced by our reconstruction scheme is not the “true”
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solution. It is of greatest importance that this fact is remem-
bered, not only in WDF reconstruction, but when solving
all types of ill-posed inversion problems. There are several
ways of regularizing an inverse problem, and the solution
we come up with may depend crucially on the particular
regularization method that we use. When we reconstruct the
WDF our aim is to keep the solution as flat and struc-
tureless as possible. The reason for this is that structures in
the WDF are crucial for understanding the underlying
physics. Therefore, we want the reconstructed WDF to
reflect onty such structures that are supported by the data,
and not imposed by our particular reconstruction method.
In practice, there is no way to guarantee this, but the least
we should demand of our scheme is that when the data are
consistent with a perfectly flat WDF, then this must also be
the solution that we obtain.

One can devise several functionals that will produce a flat
solution when such a solution is allowed by the data. As we
have seen carlier, the entropy functional H,(f) in (19) has
this property, and so has any functional of the form

10y [ L)
7o Fan

H(f:p)=— [ dy P20 (46)

One of the simplest functions with the above property is the

quadratic form
n x, 2
2 ( _XA,) ‘

i=1

(47)

One reason why we have not attempted to use this function
when recontructing the WDF is that it does not automati-
cally make the solution positive. However, it could be
interesting to see how it compares to the entropy function,
In this context one can mention the comparison made by
Gull and Newton {407, which does not scem adequate since
their quadratic function has its minimum at x =0,

The entropy H(i) in (17) seems to be one of the simplest
functionals with the flat solution property that automati-
cally produces a strictly positive solution. We think that
these are two of the most important arguments for using
entropy regularization in general, and our entropy func-
tional in particular. For those interested in philosophical
arguments, one can show that H is in reality the logarithm
of the prior probability of a macrosignal defined by, for
instance, Loredo [43], provided that the limit to a con-
tinuous distribution is taken properly. It is interesting to
note that Loredo does not seem to realize that one of the
two parameters in his prior probability is redundant and
can be incorporated in the entropy as in H{yr).

Even if reconstruction with maximum-entropy seems to
be one of the best and safest ways of resolving underdeter-
mined inverse problems, we are still faced with the fact that
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the solution we obtain is almost certainly not the true solu-
tion. This fact must always be taken into account when
interpreting reconstructions of any kind. The value of a
reconstructed WDF on its own lies in providing a test for
consistency in k-space between possible physical generation
mechanisms and the data. For instance, the reconstructed
WDF presented in Section 4 is probably not consistent with
any local generation mechanism. The fact that the M-E
condition in some sense sclects the smoothest solution
consistent with the data indicates that also the true WDF
is inconsistent with any conceivable local generation
mechanism. This suggests that the waves have reached the
satellite by propagating from the source region located
somewhere else in the magnetosphere. The direction of the
wave vector shown in Fig. 13 may then be taken as a
starting point in a search for this source region. Without the
reconstructed WDF such a search would be difficult.

Although the information that can be obtained from the
reconstructed WDF on its own can be of great value, we feel
that WDF reconstruction has its greatest merits when the
solution can be combined successfully with other types of
analysis techniques and observations that cannot easily be
incorporated as prior information in the reconstruction.
Oscarsson and Rénnmark [32] show one such example,
where the reconstructed WDF can be combined con-
sistently with other types of information, aliowing a
convincing interpretation of observations made by the
Swedish Viking satellite. '

The reconstruction method presented in this paper is
developed for reconstructing the WDF. However, the only
thing pertaining to the WDF case is the integration kernels.
Since other inverse problems can be phrased in terms of
integral equations similar to those we use, we believe that
our method should be applicable in many other cases. The
importance of dual principles is emphasized also by others
{24], but the advantage with reducing the number of
unknowns to the number of independent measurements
should be obvious in cases with sparse data. The dual
formulation employed in our scheme should be useful
also when y? constraints are used, together with the fixed
normalization entropy H,(f). (In fact, setting X=1 in
our scheme gives the traditional fixed normalization M-E
solution.) However, we feel that the entropy function H(i)
that we use is the more appropriate one, not only in
WDF reconstruction, but also in areas such as image
reconstruction and computer tomography.

APPENDIX A

In order to expleit the possibility of reducing the dimen-
sion of the problem further, we form the matrix

B= [KI’KZ-JN«: Kn]a (48)
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where the kernels A, are treated as column vectors. Let n, be
the rank of B, and let the vectors v, i=1, .., n,, form an
orthonormal basis for the column space of B. The basis
vectors can be obtained by diagoenalizing BBT, We can then
write

r=Vz, (49)
where
V={_v, ¥, .. %1 (50}
and
ze R, (51)
Now we can re-write the dual problem as
=C'—X Zn: a—V!K,’ exp [lzﬁ,’]
o 0 B 1 ] (52)
el
where
C'=Vv'C (53)
and
A/=V'A, (54)
ACKNOWLEDGMENTS

We thank J. L. Rauch at the Laboratoire de Physique et Chimie de
I'"Environnement/CNRS in Qrléans for his help with the Aureol-3 data. We
have also benefited from discussions with Tommy Elfving and Marten
Gulliksson concerning the dual formulation of the reconstruction problem.
Professor K. Ronnmark initiated and was deeply involved in the develop-
ment of the original reconstruction scheme, and his continued support has
been of great value. The cartoon of the magnetosphere was produced with
the aid of computer programs provided by Kristof Stasiewicz.

REFERENCES

o

. S. Ichimaru, Basic Principles of Plasma Physics (Benjamin, New York,
1973).

. K. Rénnmark and J. Larsson, J. Geophys. Res. 93, 1809 (1988).
. T. Oscarsson and K. Rénnmark, J. Geophys. Res. 94, 2417 (1989).
. L. R. O. Storey and F. Lefeuvre, Space Res. 14, 381 {1974).

. C. R. Smith and W. T. Grandy, Jr. (Eds.), Maximum-Entropy and
Bayesian Methods in Inverse Problems (Reidel, Dordrecht, 1985).

6. C. R. Smith and G. J. Erickson (Eds.), Maximum-E'mropy and

Bayesian Spectral Analysis and Estimation Problems (Reidel,

Dordrecht, 1987).

[ T S VE N (8]



22,
23,
24.

25.
26,

DUAL PRINCIPLES IN MAXIMUM ENTROPY RECONSTRUCTION

G. J. Erickson and C. R. Smith (Eds.), Maximum-Entropy and
Buayesian Methods in Science and Engineering, Volume 2. Applications
(Kluwer Academic, Dordrecht, 1988},

. I Skilling, Maximum Entropy and Bayesign Methods, edited by
P, F. Fougére {Kluwer Academic, Dordrecht, 1990).

. E. T. Jaynes, Phys. Rev. 106, 620 (1957).

. E. T. Jaynes, Phys. Rev. 108, 171 (1957),

. E. T. Jaynes, IEEE Trans. Systems Sci. Cybern. 88C-4, 227 (1968).
. N. 8. Tzanpes and P. A. Jonnard, Opt. Eng. 26, 1077 (1987).

. I Skilling and 8. F. Gull, in {57].

. E. A. Robinson, in [5, p. 171].

. N.J. Dusaussoy and 1. E. Abdow, JEEE Trans. Signal Process 39, 1164
(1991).

. J. P. Burg, in [5].

. A, Lippmian, in [7].

. T. Eliving, Math. Compui. Modelling 12, 729 (1989).
. J. E. Shore, in [6].

. E. T. Jaynes, Proc. IEEE 70, 939 {1982).

. 8.F. Brown, ].-F. Donati, D. E. Rees, and M. Semel, Astron. Astrophys.
250, 463 (1991).

C. 8. Fisk, Trans. Res-B 22, 69 (1988).
G. T. Herman, in [5].

G, T. Guitberg and D. N. Ghosh Roy, J. Soc. Photo-Opt. Instrum Eng.
671, 25 {1986).

R. K. Bryan, in [6].
X. Zhuang, R. M. Haralick, and Y. Zhao, [EEE Trans. Signal Process.
39, 1478 (1991),

. J. Y. Huand F. H. Li, Ultramicroscopy 35, 339 (1991).

28
29
30

3L

32

33

34.

35

36,

37
38
5.

40.

41,
42,

43,

. A. Mohammad-Djafari and G. Demoment, in [7].
. T. Oscarsson, Ph.ID. thesis, University of Umed, 1989.

. P. E. Gill, W. Murray, and M. H. Wright, Practical Optimization
(Academic Press, San Diggo, CA, 1981).

T. Oscarsson and K. Rénnmark, Proceedings, 1989 URSY Internarional
Svmposium on Electromagnetic Theory (The Royal Institute of
Techneology, Stockholm, 1989), p. 126.

T. Oscarsson and K. Rénnmark, J. Geophys. Res. 95, 21187 (1990).

W. H. Press, B, P. Flannery, S. A, Teukolsky, and W. T. Vetterling,
Numerical Recipes (Cambridge Univ. Press, New York, 1986).

Yu. I Galperin, H. Reme, C. Beghin, J. I. Berthelier, . M. Bosqued,
and B, E, Khmyrov, 4nn. Géaphys. 38, 543 (1982).

J. 1. Berthelier, F. Lefeuvre, M. M. Mogilevsky, Q. A. Molchanov,
Yu. I Galperin, 1. F. Karczewski, R. Ney, G. Gogly, C. Guerin,
M. Leveque, J.-M. Moreau, and F. X. Sene, dnn. Géophys. 38, 643
(1982},

K. Ronnmark, Rep. 179, Kiruna Geophys. Inst, Kiruna, Sweden,
1982.

K. Ronnmark, Plasma Phys. 25, 699 (1983).
M. André, J. Plasma Phys. 33, 1 {1983).

F. Lefeuvre, M. Parrot, and C. Delannoy, J. Geophys. Res. 86, 2359
(1981).

S. F. Gull and T. J. Newton, App/. Opt. 25, 156 {1986).
F. Lefeuvie and C. Delannoy, Ann. Télécommun. 34, 204 (1979).

F. Lefeuvre, J. L. Rauch, D. Lagoutte, J. J. Berthelier, and J. C. Cerisier,
J. Geophys. Res. 91, 10601 (1992},

T. I. Loredo, Maximum Entropy and Bayesian Merhods, edited by
P. F. Fougére (Kluwer Academic, Dordrecht, 1990), p. 134,



